A Five-Component Generalized mKdV Equation and Its Exact Solutions

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New Exact Solutions of a Variable-coefficient Mkdv Equation

In this paper, negatons, positons and complexiton solutions of higher order for a non-isospectral MKdV equation, the MKdV equation with loss and nonuniformity terms are obtained through the bilinear Bäcklund transformation. AMS Subject Classification: 35Q53

متن کامل

Exact Solutions for a Generalized KdV-MKdV Equation with Variable Coefficients

By using solutions of an ordinary differential equation, an auxiliary equationmethod is described to seek exact solutions of variablecoefficient KdV-MKdV equation. As a result, more new exact nontravelling solutions, which include soliton solutions, combined soliton solutions, triangular periodic solutions, Jacobi elliptic function solutions, and combined Jacobi elliptic function solutions, for...

متن کامل

New Exact Solutions for the Generalized mKdV Equation with Variable Coefficients

In this work, we employ the simple direct method to investigate the generalized mKdV equation with variable coefficients. By using this scheme, we found some new exact solutions of the equation, including four new types of Jacobi elliptic function solutions, and these solutions are degenerated to solitary wave solutions and triangle function solutions in the limit case when the modulus of the J...

متن کامل

Exact solutions of the mKdV equation with time-dependent coefficients

In this paper, we study the time variable coefficient modified Korteweg-de Vries (mKdV) equation from group-theoretic point of view. We obtain Lie point symmetries admitted by the mKdV equation for various forms for the time variable coefficients. We use the symmetries to construct the group-invariant solutions for each of the cases of the arbitrary variable coefficients. Finally, the solitary ...

متن کامل

Exact Solutions of the Generalized Kuramoto-Sivashinsky Equation

In this paper we obtain  exact solutions of the generalized Kuramoto-Sivashinsky equation, which describes manyphysical processes in motion of turbulence and other unstable process systems.    The methods used  to determine the exact solutions of the underlying equation are the Lie group analysis  and the simplest equation method. The solutions obtained are  then plotted.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics

سال: 2020

ISSN: 2227-7390

DOI: 10.3390/math8071145